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CPM Transceivers Using a
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Abstract|We examine the performance of CPM sig-
nals using a receiver structure based on a limiter{dis{
criminator detector in a Rayleigh fading environment.
Limiter{discriminator type detection is simple and ro-
bust and is therefore well{suited for mobile receivers.
We propose a new receiver processing strategy that
improves the performance of the system. We then ex-
amine the transmitter parameters to determine what
type of CPM signals perform well. Coding is examined
next. For the type of transceiver considered, we �nd
that a combination of bandwidth e�cient modulation
and convolutional coding performs best.

I. Introduction

Recently, much e�ort has been put into simple demod-

ulation techniques for mobile communication systems. A

notable example is the Limiter{Discriminator (L{D) com-

bination [1] { [15]. This technique has the advantage of be-

ing very robust, which is necessary in fading environments,

and very simple, which makes it attractive for portable and

hand{held devices. Another advantage of L{D type detec-

tion is that it is non{coherent, so a phase lock loop is not

necessary.

An L{D detector is composed of two parts: an ampli-

tude limiter and a frequency discriminator. The discrimi-

nator is basically a frequency to amplitude converter. If the

input signal frequency is above a certain center frequency,

fc, then the output of the discriminator is positive, while

if the input frequency is below fc, then the output is neg-

ative. Ideally, the output amplitude is proportional to the

input frequency. However, the output of the discriminator

is also a function of the input amplitude. To remove the

e�ect of the input amplitude, a limiter is added before the

discriminator. Therefore, if the input signal is of the form

si(t) = A cos[2�fct+ �(t)] (1)

then the output of the L{D combination is

so(t) = k
d�(t)

dt

The signal represented by (1) is called Continuous Phase

Modulation (CPM) if �(t) is a continuous function. CPM

has become a popular modulation scheme in recent years
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due to its desirable properties of bandwidth e�ciency and

constant envelope [16] { [18].

The phase, �(t), of a CPM signal is de�ned by

�(t) = �(0) + 2�h

1X
n=0

a(n)

Z
g(t� nT );

where �(0) is the initial phase, h is the modulation index,

a(n) 2 f1;�1g is the information sequence and g(t) is the

frequency pulse. The frequency pulse is continuous and

satis�es g(t) = 0 for t � 0 and t � LT . L can be thought

of as the memory length of the modulation scheme because

each symbol a�ects the signal shape for a maximum of L

symbol intervals. The case when L = 1 is called full re-

sponse signalling. Partial response signalling results when

L � 2.

In this paper, we examine the transceiver from three

viewpoints. After introducing the transceiver model in sec-

tion II, we �rst examine the receiver side of the transceiver

in section III. Here, we propose a new processing strategy

that is robust to fading and transmitter parameters. Sec-

ond, in section IV, we look at what types of CPM signals

perform well. Third, in section V, we propose a coding

strategy for systems that use a limiter{discriminator. Fi-

nally, conclusions are presented in section VI.

The performance of the communication systems exam-

ined in this paper was found by using computer simula-

tions. Each system was implemented digitally using the

Signal Processing Worksystem (SPW) 1 from Comdisco

Systems. The error probabilities were then found using

Monte Carlo simulations. The reason for using simula-

tions is that analytical techniques are di�cult to apply

and subject to simplifying assumptions. For fast fading

environments, the complexity is increased further. Also, if

some simplifying assumptions are used, important e�ects

may be lost.

II. CPM Transceiver Model

The transceiver model considered in this paper is shown

in �gure 1. The transmitter consists of an encoder and a

CPM modulator. The CPM modulator uses a signal shape

g(t) and a modulation index h.

The channel is considered to be a fast Rayleigh fading

channel. The Rayleigh channel is composed of two parts:

a multiplicative noise component, which is �ltered white

Gaussian noise, and an additive noise component, which is

white Gaussian noise.

1Signal Processing Worksystem is a registered trademark and
SPW is a trademark of Comdisco Systems Inc.
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Fig. 1. CPM Transceiver Model
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Fig. 2. Performance of FSK with an ISD processor for various nor-
malized pre{detection �lter bandwidths, BT , compared to optimal
values in AWGN and Rayleigh fading channels.

The receiver �rst removes out{of{band interference with

a Butterworth pre{detection �lter. Next, the L{D combi-

nation demodulates the signal. Finally, a processor/decoder

circuit estimates the originally transmitted data.

III. Receiver Structures

As a benchmark for comparison, the performance of the

system using an integrate{sample{and{dump (ISD) cir-

cuit is shown in �gure 2. From the �gure, we can see

that the performance of the system at high SNR values

gets worse as the bandwidth of the pre{detection �lter de-

creases. This is due to the increase in ISI due to the nar-

rower �lter.

To improve the performance of the system, we look at

the cause of the errors. In �gure 3, the output of the L{

D is shown compared to the magnitude and phase of the

fading. From this �gure, we can see that the error is due

to a drop in the fading magnitude. Therefore, we can use

this fact to improve the performance of the system.

This leads us to propose a new post{detection proces-

sor, which is shown in �gure 4. We refer to this as the Fad-

ing Magnitude ISD (FM{ISD) processor. This processor

is a type of estimator{correlator. It estimates the mag-
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Fig. 3. The output of the limiter{discriminator during a typical error
event.
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Fig. 4. Proposed post{detection processor (FM{ISD)

nitude of the fading with an envelope detector and then

correlates this estimate with the output of the L{D. This

has the e�ect of reducing the in
uence of the fading by

deemphasizing those parts of the signal that are the most

distorted.

The performance of the FM{ISD processor is shown in

�gure 5. As shown in the �gure, the FM{ISD processor

improves the performance of the system. The improve-

ment obtained depends on the modulation format used,

but there is an improvement for all formats.

If the fading rate changes, the improvement in perfor-

mance changes somewhat, but there is still an improve-

ment. In general, the improvement decreases as the fading

rate decreases. This is to be expected, because the FM{

ISD processor compensates for errors caused by sudden

changes in the fading. If the changes are more gradual,

as in the case of slow fading, then the FM{ISD processor

will not be able to improve the performance of the system.

However, it will not degrade the performance either.
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Fig. 5. Performance of the FM{ISD processor compared to the ISD
processor.
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modulation indices.

IV. Transmitter Modifications

We now look at the transmitter side of the transceiver.

We mainly examine what types of CPM signals perform

well with L{D detection. The CPM signals can be com-

pletely characterized by the pulse shape g(t) and the mod-

ulation index h.

In �gure 6, we show the performance at SNR = 47dB

for various pulse shapes. The rectangular pulse shape,

which corresponds to FSK, has the best performance for

values of h greater than 0:5. Below this value, a shortened

rectangular pulse (50% DC) performs the best. We can

also see from the �gure that there is an optimal value of h

for each pulse shape.

If the 99.9% bandwidth of the signal is plotted on the

x{axis instead of h, the rectangular pulse again performs
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Fig. 7. Performance comparison of reduced bandwidth coding and
TCM.

best for most bandwidth values. Therefore, we can say

that generally the rectangular pulse is best suited for use

with L{D detection.

V. Coding

Now, we consider coding for use with L{D detection.

We propose a coding strategy which we call reduced band-

width coding.

Traditional coding methods result in an increase in the

bandwidth occupied by the signal. Trellis coded modula-

tion (TCM) uses a larger signal set so that the bandwidth

of the resulting signal remains the same as the uncoded

scheme. Reduced bandwidth coding uses a modulation

scheme that is more bandwidth e�cient and an appropri-

ate rate convolutional code so that the resulting bandwidth

is the same as the uncoded system.

In this paper, we consider uncoded FSK with a pre{

detection �lter bandwidth given by BT = 3:75 as a bench-

mark. The reduced bandwidth coding schemes that we

consider are:

� GMSK + rate 1/2 convolutional code + BT = 1:875

� MSK + rate 2/3 convolutional code + BT = 2:5

For these combinations, the ratio of the bit rate to band-

width BT is the same as that for the uncoded FSK bench-

mark. We also examine a TCM scheme by using 4{level

FSK with a rate 1/2 convolutional code and BT = 3:75.

The performance of the various schemes is compared in

�gure 7. We can see that the reduced bandwidth coding

technique gives the best performance as long as the band-

width is chosen correctly. The GMSK scheme uses too

narrow a bandwidth so that the performance of the overall

system is reduced relative to the uncoded system. TCM

does not perform as well with L{D detection because the

distortion in the received pulse makes multi{level decisions

di�cult.

VI. Conclusions

In this paper, we examined a CPM transceiver which

uses limiter{discriminator detection in Rayleigh fading en-



vironments. We proposed a simple, robust processing strat-

egy, which improves the performance of the system com-

pared to conventional integrate{sample{and dump type

processors. As for the CPM signal itself, we found that

rectangular pulse shapes generally perform the best. Fi-

nally, we proposed a coding scheme for limiter{discriminator

detection that does not increase the required signal band-

width. We found that this scheme is better than TCM for

the transceiver considered in this paper.
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